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This is a quick introduction of manifold fitting. More details can be found in:

• Fefferman, C., Ivanov, S., Kurylev, Y., Lassas, M., & Narayanan, H. (2018, July). Fitting a putative
manifold to noisy data. In Conference On Learning Theory (pp. 688-720). PMLR.

• Yao, Z., & Xia, Y. (2019). Manifold fitting under unbounded noise. arXiv preprint arXiv:1909.10228.

• Yao, Z., Su, J., Li, B., & Yau, S. T. (2023). Manifold fitting. arXiv preprint arXiv:2304.07680.

Model Setting

Let M be a d-dimensional smooth latent manifold embedded in the ambient space RD. In this problem, we
focus on a random vector Y ∈ RD that can be expressed as

Y = X + ξ,

where X ∈ RD is an unobserved random vector following a distribution ω supported on the latent manifold M,
and ξ ∼ ϕσ represents the ambient-space observation noise, independent of X, with a standard deviation σ.
The distribution of Y can be viewed as the convolution of ω and ϕσ, whose density at point y can be expressed
as

ν(y) =

∫
M

ϕσ(y − x)ω(x)dx.
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Figure 1: Illustration for the (a) model setting and (b) overall target, where the cyan parts are
unknown/unobserved, black dots stand for the observations, and red curve represents the smooth
d-dimensional manifold estimator we want.

Assume YN = {yi}Ni=1 ⊂ RD is the collection of observed data points, also in the form of

yi = xi + ξi, for i = 1, · · · , N,

with (yi, xi, ξi) being N independent and identical realizations of (Y,X, ξ). Based on YN , we construct an

estimator M̂ for M and provide theoretical justification for it under the following main assumptions:

• The latent manifold M is a compact and twice-differentiable d-dimensional sub-manifold, embedded in
the ambient space RD. Its volume with respect to the d-dimensional Hausdorff measure is upper bounded
by V , and its reach1 is lower bounded by a fixed constant τ .

• The distribution ω is a smooth distribution, with respect to the d-dimensional Hausdorff measure, on M.

• The noise distribution ϕσ is a Gaussian distribution supported on RD with density function

ϕσ(ξ) = (
1

2πσ2
)

D
2 exp (−∥ξ∥22

2σ2
).

• The intrinsic dimension d and noise standard deviation σ < 1 are known.

The manifold estimator M̂ is suppose to be

• d-dimensional smooth manifold with lower bounded reach;

• close to M.
1The value of reach(M) can be interpreted as a second-order differential quantity if M is treated as a function. Namely, for any

arc-length parameterized geodesic γ of M, ∥γ′′(t)∥2 ≤ reach(M)−1 for all t.
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Method

Let z be the point of interest, which is close to M, and z∗ = argminz′∈M d(z′, z) be the projection of z on
M. Intuitively, the estimation of manifold can be viewed as “pushing” z to z∗. This pushing process involves
two key components: direction and distance. The direction should be perpendicular to Tz∗M, which can be
deduced from the local “covariance” structure, while the distance d(z,M) might be estimated using the local
average. The following subsections will introduce some intuitive concepts related to this process. For more
details, please refer to the papers mentioned previously.
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Figure 2: Push point z towards the manifold/z∗. The pushing should be perpendicular to Tz∗M.

Estimate Direction from Local “Covariance”

For each point yi ∈ YN , let y∗i be its projection on M. Assume the normal space of M at y∗i has orthonormal
basis {u1, . . . , uD−d}, we use

Π⊥
y∗
i
=
(
u1, . . . , uD−d

)(
u1, . . . , uD−d

)⊤
=

D−d∑
k=1

uku
⊤
k

to represent the projection matrix onto this space. This projection matrix can be estimated from the local
variation centered at yi, and the estimator of Π⊥

y∗
i
is denoted as Π̂⊥

yi
.
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Figure 3: Illustration for the projection matrix and local variation.

Let BD(yi, r) be the D-dimensional Euclidean ball centered at yi with radius r. If r is “large” enough, such
that ∥yi− y∗i ∥ ≤ ∥ξi∥ ≤ c0r, the area of BD(yi, r)∩M roughly has radius c1r, and the variation of M along the
normal direction is less than c2r

2 due to the reach. Then, since the distribution of X is smooth, the variation
of Y − yi along direction:

• ↔: is roughly in the order of (c1r)
2 + σ2;

• ↕: is roughly bounded above by the order of (c2r
2)2 + σ2.

Thus, we can define

Σ̂r,i =

∑N
j=1(yj − yi)(yj − yi)

⊤I(∥yj − yi∥ ≤ r)∑n
j=1 I(∥yj − yi∥ ≤ r)

.
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Then perform SVD on Σ̂r,i to obtain {λ1 < · · · < λD} and {v1, . . . , vD}, and estimate Π⊥
y∗
i
with

Π̂⊥
yi

=
(
v1, . . . , vD−d

)(
v1, . . . , vD−d

)⊤
=

D−d∑
k=1

vkv
⊤
k ,

whose estimation error can be bounded.

Smoothing System

To make the overall estimation smooth enough, the weight function for yi with respect to z is defined as

α̃i(z) =

(
1− ∥z − yi∥2

r′2

)β

I(∥z − yi∥ ≤ r′), αi(z) =
α̃i(z)∑n
i=1 α̃i(z)

,

where β ≥ 2 is a parameter corresponding to the smoothness. Then, for z, a smooth reference point can be
given by µ̂z =

∑N
i=1 αi(z)yi, and a smooth projection matrix is calculated as

Ψz = PD−d

(
N∑
i=1

αi(z)Π̂
⊥
yi

)
,

where Pk(A) stands for the projection of matrix A onto the span space corresponding to its largest k eigenvalues.

The Manifold Estimator
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Figure 4: The bias vector.

The vector from z∗ to z is estimated with the bias vector

b̂(z) =

n∑
i=1

αi(z)Ψz(z − yi) = Ψz(z − µ̂z),

which can be shown

• ∥b̂(z)∥ close to ∥z − z∗∥;

• Jacobian matrix of b̂(z) is close to Φz, i.e. ∥Jb(z)−Ψz∥ ≤ Cσ/r′ + op(1);

• Hessian matrix of b̂(z) is lower bounded.

Finally, the manifold estimator is given by

M̂ = {z ∈ RD : d(z,M) < cr′, b̂(z) = 0}.

Under all the error bounds and all the smoothness, for any z′ ∈ M̂, with high probability,

• z′ is close to M;

• in its neighborhood, b̂(z) is rank D − d.

Hence, with high probability, M̂ is a d-dimension manifold, close to M, and its reach can be bounded via the
Hessian of b̂(z).

October 25, 2024 3


