Quick Notes on Manifold Fitting

Su Jiaji

October 25, 2024

This is a quick introduction of manifold fitting. More details can be found in:

- Fefferman, C., Ivanov, S., Kurylev, Y., Lassas, M., & Narayanan, H. (2018, July). Fitting a putative manifold to noisy data. In Conference On Learning Theory (pp. 688-720). PMLR.
- Yao, Z., & Xia, Y. (2019). Manifold fitting under unbounded noise. $arXiv$ preprint $arXiv:1909.10228$.
- Yao, Z., Su, J., Li, B., & Yau, S. T. (2023). Manifold fitting. arXiv preprint arXiv:2304.07680.

Model Setting

Let M be a d-dimensional smooth latent manifold embedded in the ambient space \mathbb{R}^D . In this problem, we focus on a random vector $Y \in \mathbb{R}^D$ that can be expressed as

$$
Y = X + \xi,
$$

where $X \in \mathbb{R}^D$ is an unobserved random vector following a distribution ω supported on the latent manifold M, and $\xi \sim \phi_{\sigma}$ represents the ambient-space observation noise, independent of X, with a standard deviation σ . The distribution of Y can be viewed as the convolution of ω and ϕ_{σ} , whose density at point y can be expressed as

$$
\nu(y) = \int_{\mathcal{M}} \phi_{\sigma}(y - x)\omega(x)dx.
$$

Figure 1: Illustration for the (a) model setting and (b) overall target, where the cyan parts are unknown/unobserved, black dots stand for the observations, and red curve represents the smooth d-dimensional manifold estimator we want.

Assume $\mathcal{Y}_N = \{y_i\}_{i=1}^N \subset \mathbb{R}^D$ is the collection of observed data points, also in the form of

$$
y_i = x_i + \xi_i, \quad \text{for } i = 1, \cdots, N,
$$

with (y_i, x_i, ξ_i) being N independent and identical realizations of (Y, X, ξ) . Based on \mathcal{Y}_N , we construct an estimator $\hat{\mathcal{M}}$ for \mathcal{M} and provide theoretical justification for it under the following main assumptions:

- The latent manifold $\mathcal M$ is a compact and twice-differentiable d-dimensional sub-manifold, embedded in the ambient space \mathbb{R}^D . Its volume with respect to the d-dimensional Hausdorff measure is upper bounded by V, and its reach¹ is lower bounded by a fixed constant τ .
- The distribution ω is a smooth distribution, with respect to the d-dimensional Hausdorff measure, on M.
- The noise distribution ϕ_{σ} is a Gaussian distribution supported on \mathbb{R}^D with density function

$$
\phi_{\sigma}(\xi) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{D}{2}} \exp\left(-\frac{\|\xi\|_2^2}{2\sigma^2}\right).
$$

• The intrinsic dimension d and noise standard deviation $\sigma < 1$ are known.

The manifold estimator $\widehat{\mathcal{M}}$ is suppose to be

- \bullet d-dimensional smooth manifold with lower bounded reach;
- \bullet close to \mathcal{M} .

¹The value of reach(M) can be interpreted as a second-order differential quantity if M is treated as a function. Namely, for any arc-length parameterized geodesic γ of $\mathcal{M}, \|\gamma''(t)\|_2 \leq \text{reach}(\mathcal{M})^{-1}$ for all t.

Method

Let z be the point of interest, which is close to M, and $z^* = \arg \min_{z' \in \mathcal{M}} d(z', z)$ be the projection of z on M. Intuitively, the estimation of manifold can be viewed as "pushing" z to z^* . This pushing process involves two key components: direction and distance. The direction should be perpendicular to $T_{z*}M$, which can be deduced from the local "covariance" structure, while the distance $d(z, \mathcal{M})$ might be estimated using the local average. The following subsections will introduce some intuitive concepts related to this process. For more details, please refer to the papers mentioned previously.

Figure 2: Push point z towards the manifold/z^{*}. The pushing should be perpendicular to $T_{z*}M$.

Estimate Direction from Local "Covariance"

For each point $y_i \in \mathcal{Y}_N$, let y_i^* be its projection on M. Assume the normal space of M at y_i^* has orthonormal basis $\{u_1, \ldots, u_{D-d}\},\$ we use

$$
\Pi_{y_i^*}^{\perp} = (u_1, \dots, u_{D-d})(u_1, \dots, u_{D-d})^{\top} = \sum_{k=1}^{D-d} u_k u_k^{\top}
$$

to represent the projection matrix onto this space. This projection matrix can be estimated from the local variation centered at y_i , and the estimator of $\Pi_{y_i^*}^{\perp}$ is denoted as $\widehat{\Pi}_{y_i}^{\perp}$.

Figure 3: Illustration for the projection matrix and local variation.

Let $\mathcal{B}_D(y_i,r)$ be the D-dimensional Euclidean ball centered at y_i with radius r. If r is "large" enough, such that $||y_i - y_i^*|| \le ||\xi_i|| \le c_0 r$, the area of $\mathcal{B}_D(y_i, r) \cap \mathcal{M}$ roughly has radius c_1r , and the variation of $\mathcal M$ along the normal direction is less than c_2r^2 due to the reach. Then, since the distribution of X is smooth, the variation of $Y - y_i$ along direction:

- \leftrightarrow : is roughly in the order of $(c_1r)^2 + \sigma^2$;
- $\hat{\downarrow}$: is roughly bounded above by the order of $(c_2r^2)^2 + \sigma^2$.

Thus, we can define

$$
\widehat{\Sigma}_{r,i} = \frac{\sum_{j=1}^{N} (y_j - y_i)(y_j - y_i)^\top \mathbb{I}(\|y_j - y_i\| \le r)}{\sum_{j=1}^{n} \mathbb{I}(\|y_j - y_i\| \le r)}.
$$

Then perform SVD on $\hat{\Sigma}_{r,i}$ to obtain $\{\lambda_1 < \cdots < \lambda_D\}$ and $\{v_1, \ldots, v_D\}$, and estimate $\Pi_{y_i^*}^{\perp}$ with

$$
\widehat{\Pi}_{y_i}^{\perp} = (v_1, \ldots, v_{D-d})(v_1, \ldots, v_{D-d})^{\top} = \sum_{k=1}^{D-d} v_k v_k^{\top},
$$

whose estimation error can be bounded.

Smoothing System

To make the overall estimation smooth enough, the weight function for y_i with respect to z is defined as

$$
\widetilde{\alpha}_i(z) = \left(1 - \frac{\|z - y_i\|^2}{r'^2}\right)^{\beta} \mathbb{I}(\|z - y_i\| \le r'), \quad \alpha_i(z) = \frac{\widetilde{\alpha}_i(z)}{\sum_{i=1}^n \widetilde{\alpha}_i(z)},
$$

where $\beta \geq 2$ is a parameter corresponding to the smoothness. Then, for z, a smooth reference point can be given by $\widehat{\mu}_z = \sum_{i=1}^N \alpha_i(z) y_i$, and a smooth projection matrix is calculated as

$$
\Psi_z = \mathbb{P}_{D-d} \left(\sum_{i=1}^N \alpha_i(z) \widehat{\Pi}_{y_i}^{\perp} \right),
$$

where $\mathbb{P}_k(A)$ stands for the projection of matrix A onto the span space corresponding to its largest k eigenvalues.

The Manifold Estimator

Figure 4: The bias vector.

The vector from z^* to z is estimated with the bias vector

$$
\widehat{b}(z) = \sum_{i=1}^n \alpha_i(z) \Psi_z(z - y_i) = \Psi_z(z - \widehat{\mu}_z),
$$

which can be shown

- $\|\widehat{b}(z)\|$ close to $\|z z^*\|;$
- Jacobian matrix of $\widehat{b}(z)$ is close to Φ_z , i.e. $||J_b(z) \Psi_z|| \leq C\sigma/r' + o_p(1);$
- Hessian matrix of $\widehat{b}(z)$ is lower bounded.

Finally, the manifold estimator is given by

$$
\widehat{\mathcal{M}} = \{ z \in \mathbb{R}^D : d(z, \mathcal{M}) < cr', \widehat{b}(z) = 0 \}.
$$

Under all the error bounds and all the smoothness, for any $z' \in \mathcal{M}$, with high probability,

- z' is close to $\mathcal{M};$
- in its neighborhood, $\hat{b}(z)$ is rank $D d$.

Hence, with high probability, $\widehat{\mathcal{M}}$ is a d-dimension manifold, close to \mathcal{M} , and its reach can be bounded via the Hessian of $\widehat{b}(z)$.